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Research Challenges:
- # clients vs. limited # nodes in I/O partition
- balance b/w utilization across system for scalability
=> address mismatch between current 

point-to-point, file-based I/O and 
the actual needs of data-intensive HPC applications



Solution Approach: LWFS and I/O Graphs

Rich application(-specific), customizable I/O structure:

LWFS: Light Weight File System:
- asynchronous or off-line processing of file/storage actions

I/O Graphs:
- explicitly represent I/O tasks and their 

mapping to MPP and I/O nodes



Key Elements
of Solution Approach

Addressing scalability challenges:
- prohibit system-imposed functions requiring O(n) functions

(n = #client nodes)
- prohibit data structures of size O(n) 
(e.g., no connection-based mechs.)

New tools to `upgrade’ from lightweight nature of I/O system:
- deal with differing storage organizations
- enhance metadata associated with I/O data and actions
- ensure performance  and QoS requirements of I/O



Proposed SDSS System
• I/O described as ‘structured events’ manipulated by dynamic 

flow graphs (i.e., I/O Graphs)

• I/O Graphs ‘connect’ simulation components with I/O 
subsystem; created, configured, removed dynamically; 
mapped automatically

• I/O Graph nodes implement application-specific I/O services 
(e.g., data staging); managed automatically

• I/O Graphs are integrated with LWFS, in fact, they perform 
some of the actions required by LWFS (e.g., consistency 
management done by transaction managers)

• I/O Graphs can operate asynchronously and concurrently 
(e.g., use of MetaBots)



• SDSS extends, not replaces, existing back-end 
storage/file systems (e.g., LWFS) and HPC 
transport protocols (e.g., portals)

• SDSS uses efficient binary representation of 
metadata (e.g., PBIO)

• SDSS interoperates with other systems (e.g., 
Lustre)

• SDSS will run on realistic machines (e.g., 
ORNL/Sandia machines) with realistic 
applications (e.g., fusion modeling, ORNL)

Implementation



SDSS Team Capabilities

• UNM: Maccabe, Bridges, Widener
• Sandia: Oldfield (LWFS)

• Georgia Tech: Schwan, Eisenhauer, Wolf
• (ORNL: Klasky (Fusion Modeling))


